Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Musculoskelet Disord ; 25(1): 206, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454404

RESUMO

BACKGROUND: Osteoporosis is a genetic disease caused by the imbalance between osteoblast-led bone formation and osteoclast-induced bone resorption. However, further gene-related pathogenesis remains to be elucidated. METHODS: The aberrant expressed genes in osteoporosis was identified by analyzing the microarray profile GSE100609. Serum samples of patients with osteoporosis and normal group were collected, and the mRNA expression of candidate genes was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The mouse cranial osteoblast MC3T3-E1 cells were treated with dexamethasone (DEX) to mimic osteoporosis in vitro. Alizarin Red staining and alkaline phosphatase (ALP) staining methods were combined to measure matrix mineralization deposition of MC3T3-E1 cells. Meanwhile, the expression of osteogenesis related genes including alkaline phosphatase (ALP), osteocalcin (OCN), osteopontin (OPN), Osterix, and bone morphogenetic protein 2 (BMP2) were evaluated by qRT-PCR and western blotting methods. Then the effects of candidate genes on regulating impede bone loss caused by ovariectomy (OVX) in mice were studied. RESULTS: Cyclin A1 (CCNA1) was found to be significantly upregulated in serum of osteoporosis patients and the osteoporosis model cells, which was in line with the bioinformatic analysis. The osteogenic differentiation ability of MC3T3-E1 cells was inhibited by DEX treatment, which was manifested by decreased Alizarin Red staining intensity, ALP staining intensity, and expression levels of ALP, OCN, OPN, Osterix, and BMP2. The effects of CCNA1 inhibition on regulating osteogenesis were opposite to that of DEX. Then, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that genes negatively associated with CCNA1 were enriched in the TGF-beta signaling pathway. Inhibitor of TGF-beta signaling pathway partly reversed osteogenesis induced by suppressed CCNA1. Furthermore, suppressed CCNA1 relieved bone mass of OVX mice in vivo. CONCLUSION: Downregulation of CCNA1 could activate TGF-beta signaling pathway and promote bone formation, thus playing a role in treatment of osteoporosis.


Assuntos
Antraquinonas , Osteoporose , Fator de Crescimento Transformador beta , Animais , Feminino , Humanos , Camundongos , Fosfatase Alcalina/metabolismo , Diferenciação Celular , Ciclina A1/metabolismo , Osteoblastos/metabolismo , Osteogênese , Osteoporose/induzido quimicamente , Fator de Crescimento Transformador beta/metabolismo , Fatores de Crescimento Transformadores/efeitos adversos , Fatores de Crescimento Transformadores/metabolismo
2.
Zhonghua Gan Zang Bing Za Zhi ; 31(10): 1043-1050, 2023 Oct 20.
Artigo em Chinês | MEDLINE | ID: mdl-38016768

RESUMO

Objective: To investigate the effect of cyclin A1 on the invasion, metastasis, and prognosis of hepatocellular carcinoma (HCC). Methods: Immunohistochemistry (IHC) was used to detect the expressional condition of cyclin A1 in HCC and paraffin-embedded non-tumor adjacent tissues. Kaplan-Meier method was used for the survival analysis of patients with HCC. Western blot (WB) was used to detect the expression of cyclin A1 in HCCLM3 and QGY-7703 cells. Scratch wound healing assay, transwell migration, and invasion assay were used to detect the effect of cyclin A1 overexpression on cell migration and invasion ability. WB was used to detect changes in the expression of matrix metalloproteinase (MMP) 2, MMP9, and vascular endothelial growth factor (VEGF) after overexpression of cyclin A1. Measurement data were compared using a t-test and analysis of variance. Count data was measured using χ (2) test and the Log-rank method was performed for survival analysis. Results: Cyclin A1 expression rates were higher in the tissues of HCC patients with recurrent metastasis than in the tissues of patients without recurrent metastasis (60.42% vs. 46.81%, χ (2) = 4.711, P < 0.05). The overall postoperative survival time (OS) and disease-free survival (DFS) were shorter in patients with high cyclin A1 expression than those with low cyclin A1 expression (45.9 months vs. 53.1 months; 42.9 months vs. 51.3 months, and P < 0.01). The postoperative OS and DFS were shorter in patients with high cyclin A1 expression and recurrent metastasis than those with low cyclin A1 expression without recurrent metastasis (31.7 months vs. 43.9 months; 18.0 months vs. 31.5 months, and P < 0.05). HCCLM3 and QGY-7703 cells were higher in the cyclin A1-pEX group than in the empty vector (vector) group (1.56 ± 0.06 vs. 0.18 ± 0.01, t = 18.75, P < 0.001; 1.31 ± 0.05 vs.0.37 ± 0.02, t = 15.17, P < 0.001). The migrated distances of HCCLM3 cells in the cyclin A1-pEX group and the vector group were (536.7 ± 14.5) µm and (327.3 ± 9.3) µm, t = 11.84, P < 0.05, respectively, while the migrated distances of QGY-7703 cells in the two groups were (916.7 ± 35.3) µm and (320.0 ± 20.8) µm, t = 13.54, P < 0.01. The migrated numbers of HCCLM3 cells in the cyclin A1-pEX group and vector group were (37.3 ± 2.4) and (7.0 ± 1.2), t = 12.67, P < 0.001, and the number of invasive cells was (73.7 ± 4.1) and (12.6 ± 1.5), t = 12.36, P < 0.001, respectively. The migrated numbers of QGY-7703 cells in the two groups were (153.3 ± 6.0) and (17.7 ± 3.7), t = 17.59, P < 0.001, and the number of invasive cells was (45.0 ± 2.9) and (9.3 ± 1.5), t = 10.66, P < 0.001, respectively. The expression levels of MMP2, MMP9, and VEGF in HCCLM3 and QGY-7703 cells were significantly higher in the cyclin A1-pEX group than those in the vector group (P < 0.05). Conclusion: Cyclin A1 plays an important role in HCC invasion and metastasis, but HCC patients with high cyclin A1 expression have a poor prognosis. Hence, cyclin A1 has high guiding significance for evaluating patient prognosis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Ciclina A1/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Metaloproteinase 9 da Matriz/metabolismo , Invasividade Neoplásica , Prognóstico , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
BMC Biol ; 21(1): 75, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37024934

RESUMO

BACKGROUND: Angiogenesis plays important roles in physiological and pathologic conditions, but the mechanisms underlying this complex process often remain to be elucidated. In recent years, liquid-liquid phase separation (LLPS) has emerged as a new concept to explain many cellular functions and diseases. However, whether LLPS is involved in angiogenesis has not been studied until now. Here, we investigated the potential role of LLPS in angiogenesis and endothelial function. RESULTS: We found 1,6-hexanediol (1,6-HD), an inhibitor of LLPS, but not 2,5-hexanediol (2,5-HD) dramatically decreases neovascularization of Matrigel plug and angiogenesis response of murine corneal in vivo. Moreover, 1,6-HD but not 2,5-HD inhibits microvessel outgrowth of aortic ring and endothelial network formation. The endothelial function of migration, proliferation, and cell growth is suppressed by 1,6-HD. Global transcriptional analysis by RNA-sequencing reveals that 1,6-HD specifically blocks cell cycle and downregulates cell cycle-related genes including cyclin A1. Further experimental data show that 1,6-HD treatment greatly reduces the expression of cyclin A1 but with minimal effect on cyclin D1, cyclin E1, CDK2, and CDK4. The inhibitory effect of 1,6-HD on cyclin A1 is mainly through transcriptional regulation because proteasome inhibitors fail to rescue its expression. Furthermore, overexpression of cyclin A1 in HUVECs largely rescues the dysregulated tube formation upon 1,6-HD treatment. CONCLUSIONS: Our data reveal a critical role of LLPS inhibitor 1,6-HD in angiogenesis and endothelial function, which specifically affects endothelial G1/S transition through transcriptional suppression of CCNA1, implying LLPS as a possible novel player to modulate angiogenesis, and thus, it might represent an interesting therapeutic target to be investigated in clinic angiogenesis-related diseases in future.


Assuntos
Ciclina A1 , Neovascularização Patológica , Humanos , Camundongos , Animais , Ciclina A1/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Movimento Celular , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Proliferação de Células
4.
Int Wound J ; 20(1): 131-139, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35606330

RESUMO

C-MYC-mediated keloid fibroblasts proliferation and collagen deposit may contribute to the development of keloids. F-box and leucine-rich repeat protein 6 (FBXL6) is reported to be involved in tumour progression, while the role of FBXL6 in keloid fibroblasts is not deciphered. Normal control skins, hypertrophic scars and keloid tissues were collected and prepared for FBXL6 detection. FBXL6 short hairpin RNAs (shRNAs) or FBXL6 over-expression plasmids were transfected into keloid fibroblasts, and then c-MYC plasmids were further transfected. Cell viability was assayed with a Cell-Counting Kit-8 kit. The relative expression of FBXL6, Cyclin A1, Cyclin D2, Cyclin E1 and Collagen I was detected with real-time PCR and Western blot. Elevated FBXL6 expression could be observed in keloid tissues and hypertrophic scars. FBXL6 shRNAs transfection could inhibit the viability of keloid fibroblasts with diminished c-MYC expression and down-regulated Cyclin A1, Cyclin D2, Cyclin E1 and Collagen I expression. At the same time, overexpressed FBXL6 could promote the proliferation of keloid fibroblasts. Overexpression of c-MYC could promote the proliferation of keloid fibroblasts reduced by FBXL6 shRNAs with up-regulated Cyclin A1 and Collagen I expression. FBXL6 could promote the growth of keloid fibroblasts by inducing c-MYC expression, which could be targeted in keloids treatment.


Assuntos
Cicatriz Hipertrófica , Queloide , Humanos , Queloide/genética , Queloide/patologia , Cicatriz Hipertrófica/metabolismo , Ciclina A1/metabolismo , Ciclina D2/metabolismo , Colágeno/metabolismo , Proliferação de Células/genética , Fibroblastos/metabolismo , Células Cultivadas
5.
J Enzyme Inhib Med Chem ; 37(1): 1884-1902, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35801486

RESUMO

A new series of 1H-pyrrole (6a-c, 8a-c), pyrrolo[3,2-d]pyrimidines (9a-c) and pyrrolo[3,2-e][1, 4]diazepines (11a-c) were designed and synthesised. These compounds were designed to have the essential pharmacophoric features of EGFR Inhibitors, they have shown anticancer activities against HCT116, MCF-7 and Hep3B cancer cells with IC50 values ranging from 0.009 to 2.195 µM. IC50 value of doxorubicin is 0.008 µM, compounds 9a and 9c showed IC50 values of 0.011 and 0.009 µM respectively against HCT-116 cells. Compound 8b exerted broad-spectrum activity against all tested cell lines with an IC50 value less than 0.05 µM. Compound 8b was evaluated against a panel of kinases. This compound potently inhibited CDK2/Cyclin A1, DYRK3 and GSK3 alpha kinases with 10-23% compared to imatinib (1-10%). It has also arrested the cell cycle of MCF-7 cells at the S phase. Its antiproliferative activity was further augmented by molecular docking into the active sites of EGFR and CDK2 cyclin A1.


Assuntos
Antineoplásicos , Pirimidinas , Antineoplásicos/química , Azepinas/farmacologia , Proliferação de Células , Ciclina A1/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Pirimidinas/química , Pirróis/química , Relação Estrutura-Atividade
6.
Glycobiology ; 32(1): 73-82, 2022 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-34791227

RESUMO

Enhanced sebocyte proliferation is associated with the pathogenesis of human skin diseases related to sebaceous gland hyperfunction and androgens, which are known to induce sebocyte proliferation, are key mediators of this process. Galectin-12, a member of the ß-galactoside-binding lectin family that is preferentially expressed by adipocytes and functions as an intrinsic negative regulator of lipolysis, has been shown to be expressed by human sebocytes. In this study, we identified galectin-12 as an important intracellular regulator of sebocyte proliferation. Galectin-12 knockdown in the human SZ95 sebocyte line suppressed cell proliferation, and its overexpression promoted cell cycle progression. Inhibition of galectin-12 expression reduced the androgen-induced SZ95 sebocyte proliferation and growth of sebaceous glands in mice, respectively. The mRNA expression of the key cell cycle regulators cyclin A1 (CCNA1) and cyclin-dependent kinase 2CDK2 was reduced in galectin-12 knockdown SZ95 sebocytes, suggesting a pathway of galectin-12 regulation of sebocyte proliferation. Further, galectin-12 enhanced peroxisome proliferator-activated receptor gamma (PPARγ) expression and transcriptional activity in SZ95 sebocytes, consistent with our previous studies in adipocytes. Rosiglitazone, a PPARγ ligand, induced CCNA1 levels, suggesting that galectin-12 may upregulate CCNA1 expression via PPARγ. Our findings suggest the possibility of targeting galectin-12 to treat human sebaceous gland hyperfunction and androgen-associated skin diseases.


Assuntos
Ciclina A1 , Glândulas Sebáceas , Animais , Ciclo Celular/genética , Proliferação de Células , Ciclina A1/metabolismo , Quinase 2 Dependente de Ciclina , Galectinas/genética , Galectinas/metabolismo , Camundongos , Glândulas Sebáceas/metabolismo
7.
Cell Signal ; 87: 110144, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34509612

RESUMO

Cyclin A1 (CCNA1) is an alternative A-type cyclin that is expressed in acute myeloid leukemia (AML). However, its functions in AML cell chemoresistance, an important cause for mortality, are incompletely understood. The purpose of this study was to expound the role and potential mechanism of CCNA1 in AML cell chemoresistance. Upregulation of CCNA1 promoted resistance of AML cells to PKC412, AC220, and AraC. Mechanistically, it was confirmed that CCNA1 transcription was negatively regulated by forkhead box A2 (FOXA2), and the downregulation of FOXA2 promoted chemoresistance in AML cells. Moreover, the promoter sequence of CCNA1 has a significant H3K27me3 modification. Enhancer of zeste homolog 2 (EZH2) enhanced H3K27me3 modification of CCNA1 promoter to inhibit CCNA1 expression, thus promoting sensitivity of AML cells to drugs. Taken together, these findings lead to deeper insights into the mechanism of AML cell chemo-sensitivity by inhibiting CCNA1 at the transcriptional level.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Leucemia Mieloide Aguda , Ciclina A1/metabolismo , Regulação para Baixo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Histona Metiltransferases/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo
8.
Br J Cancer ; 125(8): 1122-1134, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34290392

RESUMO

BACKGROUND: Large-scale genetic and epigenetic deregulations enable cancer cells to ectopically activate tissue-specific expression programmes. A specifically designed strategy was applied to oral squamous cell carcinomas (OSCC) in order to detect ectopic gene activations and develop a prognostic stratification test. METHODS: A dedicated original prognosis biomarker discovery approach was implemented using genome-wide transcriptomic data of OSCC, including training and validation cohorts. Abnormal expressions of silent genes were systematically detected, correlated with survival probabilities and evaluated as predictive biomarkers. The resulting stratification test was confirmed in an independent cohort using immunohistochemistry. RESULTS: A specific gene expression signature, including a combination of three genes, AREG, CCNA1 and DDX20, was found associated with high-risk OSCC in univariate and multivariate analyses. It was translated into an immunohistochemistry-based test, which successfully stratified patients of our own independent cohort. DISCUSSION: The exploration of the whole gene expression profile characterising aggressive OSCC tumours highlights their enhanced proliferative and poorly differentiated intrinsic nature. Experimental targeting of CCNA1 in OSCC cells is associated with a shift of transcriptomic signature towards the less aggressive form of OSCC, suggesting that CCNA1 could be a good target for therapeutic approaches.


Assuntos
Anfirregulina/genética , Ciclina A1/genética , Proteína DEAD-box 20/genética , Perfilação da Expressão Gênica/métodos , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Anfirregulina/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Ciclina A1/metabolismo , Proteína DEAD-box 20/metabolismo , Mineração de Dados , Feminino , Humanos , Masculino , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Invasividade Neoplásica , Estadiamento de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , Estudos Retrospectivos , Análise de Sequência de RNA , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo
9.
Cancer Sci ; 112(6): 2287-2298, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33738896

RESUMO

Drug resistance is a significant obstacle to effective cancer treatment. Drug resistance develops from initially reversible drug-tolerant cancer cells, which offer therapeutic opportunities to impede cancer relapse. The mechanisms of resistance to proteasome inhibitor (PI) therapy have been investigated intensively, however the ways by which drug-tolerant cancer cells orchestrate their adaptive responses to drug challenges remain largely unknown. Here, we demonstrated that cyclin A1 suppression elicited the development of transient PI tolerance in mixed-lineage leukemia (MLL) cells. This adaptive process involved reversible downregulation of cyclin A1, which promoted PI resistance through cell-cycle arrest. PI-tolerant MLL cells acquired cyclin A1 dependency, regulated directly by MLL protein. Loss of cyclin A1 function resulted in the emergence of drug tolerance, which was associated with patient relapse and reduced survival. Combination treatment with PI and deubiquitinating enzyme (DUB) inhibitors overcame this drug resistance by restoring cyclin A1 expression through chromatin crosstalk between histone H2B monoubiquitination and MLL-mediated histone H3 lysine 4 methylation. These results reveal the importance of cyclin A1-engaged cell-cycle regulation in PI resistance in MLL cells, and suggest that cell-cycle re-entry by DUB inhibitors may represent a promising epigenetic therapeutic strategy to prevent acquired drug resistance.


Assuntos
Ciclina A1/metabolismo , Enzimas Desubiquitinantes/antagonistas & inibidores , Tolerância a Medicamentos , Leucemia Aguda Bifenotípica/tratamento farmacológico , Inibidores de Proteassoma/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Cromatina/metabolismo , Ciclina A1/genética , Resistencia a Medicamentos Antineoplásicos , Tolerância a Medicamentos/genética , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , Leucemia Aguda Bifenotípica/genética , Leucemia Aguda Bifenotípica/metabolismo , Leucemia Aguda Bifenotípica/patologia , Metilação , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Prognóstico , Inibidores de Proteassoma/uso terapêutico , Ubiquitinação
10.
Acta Histochem ; 122(8): 151635, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33007517

RESUMO

The malignancy that most affects the endocrine system is thyroid neoplasm, with an increasing incidence over the years. The most prevalent histological type of the carcinomas that affect the thyroid gland is papillary carcinoma with a prevalence of 80 % worldwide. The current diagnostic methodology may present inconclusive results, emphasizing the need for new effective and sensitive techniques to aid the diagnosis. For this, it is necessary to understand molecular and protein mechanisms in the identification of diagnostic and predictive markers in the lesions. The Cyclin A1 protein, encoded by the CCNA1 gene, is an important cell cycle regulator, belonging to the MAPK/ERK signaling pathway directly involved with thyroid cancer. The aim of this study was to evaluate the CCNA1 gene and Cyclin A1 protein expression in papillary thyroid carcinoma, follicular thyroid carcinoma, and benign thyroid lesions, by real time quantitative PCR and immunohistochemistry analysis, respectively, to verify their roles as potential diagnostic and predictive markers to future applications in the clinical routine. Overexpression of CCNA1 gene was observed in the papillary carcinoma group compared to the normal group (P = 0.0023), benign lesions (P = 0.0011), colloid goiter (P = 0.0124), and follicular carcinoma (P = 0.0063). No differential expression was observed in the papillary primary tumor group from negative lymph nodes compared with the one from positive lymph nodes (P = 0.3818). Although an increased expression of Cyclin A1 was observed in the PTC group compared to the other one in the IHC analysis, no significant difference was observed (Fisher's exact Test). A Cyclin A1 overexpression was detected with weak to mid-moderate immunoreactivity in the benign group (k = 0.56), (score 1.5); mid-moderate to moderate in the goiter group (k = 0.58); weak in the FTC group (k = 0.33); and mid-moderate to moderate in the PTC group (k = 0.48). Due to the small sample size in the IHC analysis and to the fact that not all RNA is translated into protein, the diagnostic potential of Cyclin A1 could not be assessed. However, these findings highlight the potential of the CCNA1 gene as a diagnostic marker for papillary thyroid carcinoma.


Assuntos
Adenocarcinoma Folicular/genética , Biomarcadores Tumorais/genética , Ciclina A1/genética , Neoplasias/genética , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Adenocarcinoma Folicular/diagnóstico , Adenocarcinoma Folicular/patologia , Adenocarcinoma Folicular/cirurgia , Adulto , Biomarcadores Tumorais/metabolismo , Ciclina A1/metabolismo , Diagnóstico Diferencial , Feminino , Expressão Gênica , Humanos , Imuno-Histoquímica , Linfonodos/metabolismo , Linfonodos/patologia , Linfonodos/cirurgia , Masculino , Pessoa de Meia-Idade , Neoplasias/diagnóstico , Neoplasias/patologia , Neoplasias/cirurgia , Câncer Papilífero da Tireoide/diagnóstico , Câncer Papilífero da Tireoide/patologia , Câncer Papilífero da Tireoide/cirurgia , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia , Glândula Tireoide/cirurgia , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/cirurgia , Carga Tumoral
11.
Biomolecules ; 10(5)2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32380793

RESUMO

The methylome of open chromatins was investigated in colorectal cancer (CRC) to explore cancer-specific methylation and potential biomarkers. Epigenome-wide methylome of open chromatins was studied in colorectal cancer tissues using the Infinium DNA MethylationEPIC assay. Differentially methylated regions were identified using the ChAMP Bioconductor. Our stringent analysis led to the discovery of 2187 significant differentially methylated open chromatins in CRCs. More hypomethylated probes were observed and the trend was similar across all chromosomes. The majority of hyper- and hypomethylated probes in open chromatin were in chromosome 1. Our unsupervised hierarchical clustering analysis showed that 40 significant differentially methylated open chromatins were able to segregate CRC from normal colonic tissues. Receiver operating characteristic analyses from the top 40 probes revealed several significant, highly discriminative, specific and sensitive probes such as OPLAH cg26256223, EYA4 cg01328892, and CCNA1 cg11513637, among others. OPLAH cg26256223 hypermethylation is associated with reduced gene expression in the CRC. This study reports many open chromatin loci with novel differential methylation statuses, some of which with the potential as candidate markers for diagnostic purposes.


Assuntos
Cromatina/genética , Neoplasias Colorretais/genética , Epigenoma , Ciclina A1/genética , Ciclina A1/metabolismo , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Humanos , Transativadores/genética , Transativadores/metabolismo
12.
J Cell Physiol ; 235(10): 7136-7145, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32030765

RESUMO

Mammalian cyclin A1 is prominently expressed in testis and essential for meiosis in the male mouse, however, it shows weak expression in ovary, especially during oocyte maturation. To understand why cyclin A1 behaves in this way in the oocyte, we investigated the effect of cyclin A1 overexpression on mouse oocyte meiotic maturation. Our results revealed that cyclin A1 overexpression triggered meiotic resumption even in the presence of germinal vesicle breakdown inhibitor, milrinone. Nevertheless, the cyclin A1-overexpressed oocytes failed to extrude the first polar body but were completely arrested at metaphase I. Consequently, cyclin A1 overexpression destroyed the spindle morphology and chromosome alignment by inducing premature separation of chromosomes and sister chromatids. Therefore, cyclin A1 overexpression will prevent oocyte maturation although it can promote meiotic resumption. All these results show that decreased expression of cyclin A1 in oocytes may have an evolutional significance to keep long-lasting prophase arrest and orderly chromosome separation during oocyte meiotic maturation.


Assuntos
Segregação de Cromossomos/genética , Segregação de Cromossomos/fisiologia , Ciclina A1/genética , Ciclina A1/metabolismo , Meiose/genética , Meiose/fisiologia , Oócitos/metabolismo , Animais , Segregação de Cromossomos/efeitos dos fármacos , Feminino , Meiose/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Milrinona/farmacologia , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oogênese/efeitos dos fármacos , Oogênese/genética , Oogênese/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Separase/metabolismo , Regulação para Cima
13.
Cells ; 8(6)2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31212688

RESUMO

Skeletal muscle plays an essential role in maintaining body energy homeostasis and body flexibility. Loss of muscle mass leads to slower wound healing and recovery from illness, physical disability, poor quality of life, and higher health care costs. So, it is critical for us to understand the mechanism of skeletal muscle myogenic differentiation for maintaining optimal health throughout life. miR-501-3p is a novel muscle-specific miRNA, and its regulation mechanism on myoblast myogenic differentiation is still not clear. We demonstrated that FOS was a direct target gene of miR-501-3p, and MyoD regulated miR-501-3p host gene Clcn5 through bioinformatics prediction. Our previous laboratory experiment found that MDFI overexpression promoted C2C12 myogenic differentiation and MyoD expression. The database also showed there is an FOS binding site in the MDFI promoter region. Therefore, we hypothesize that miR-501-3p formed a feedback loop with FOS, MDFI, and MyoD to regulate myoblast differentiation. To validate our hypothesis, we demonstrated miR-501-3p function in the proliferation and differentiation period of C2C12 cells by transfecting cells with miR-501-3p mimic and inhibitor. Then, we confirmed there is a direct regulatory relationship between miR-501-3p and FOS, MyoD and miR-501-3p, FOS and MDFI through QPCR, dual-luciferase reporter system, and ChIP experiments. Our results not only expand our understanding of the muscle myogenic development mechanism in which miRNA and genes participate in controlling skeletal muscle development, but also provide treatment strategies for skeletal muscle or metabolic-related diseases in the future.


Assuntos
MicroRNAs/metabolismo , Proteína MyoD/metabolismo , Fatores de Regulação Miogênica/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Regiões 3' não Traduzidas , Animais , Antagomirs/metabolismo , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Ciclina A1/genética , Ciclina A1/metabolismo , Camundongos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Desenvolvimento Muscular , Proteína MyoD/genética , Mioblastos/citologia , Mioblastos/metabolismo , Fatores de Regulação Miogênica/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-fos/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-fos/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo
14.
Am J Physiol Endocrinol Metab ; 316(3): E443-E452, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30576241

RESUMO

The purpose of this study was to explore the role of microRNA-451a (miR-451a) in diabetic retinopathy through activating transcription factor 2 (ATF2). The epiretinal membrane samples from patients with proliferative diabetic retinopathy (PDR) were immunolabeled with an antibody for Ki-67 to identify the proliferative cells. The expression of miR-451a was measured by qRT-PCR in the retina of Akita mice and in RPE cells under diabetic conditions. The potential downstream targets of miR-451a were predicted by bioinformatics and confirmed by dual luciferase assay, qRT-PCR, and Western blotting. Mitochondrial function, cell proliferation, and migration assays were used to detect the functional change after transfection of miR-451a mimic and inhibitor. Proliferative RPE cells were identified in the epiretinal membrane from PDR patients. The expression of miR-451a was downregulated both in the retina of Akita mice and 4-hydroxynonenal (4-HNE)-treated RPE cells. Bioinformatic analysis and luciferase assay identified ATF2 as a potential target of miR-451a. miR-451a inhibited proliferation and migration of RPE cells. The mitochondrial function was enhanced by miR-451a mimic, but suppressed by miR-451a inhibitor. In diabetic conditions, miR-451a showed a protective effect on mitochondrial function. The results of qRT-PCR and Western blotting revealed that overexpression of miR-451a downregulated the expression of ATF2 and its downstream target genes CyclinA1, CyclinD1, and MMP2. In conclusion, miR-451a/ATF2 plays a vital role in the regulation of proliferation and migration in RPE cells through regulation of mitochondrial function, which may provide new perspectives for developing effective therapies for PDR.


Assuntos
Fator 2 Ativador da Transcrição/genética , Retinopatia Diabética/genética , MicroRNAs/genética , Mitocôndrias/metabolismo , Fator 2 Ativador da Transcrição/metabolismo , Adulto , Idoso , Animais , Movimento Celular , Proliferação de Células , Ciclina A1/genética , Ciclina A1/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Retinopatia Diabética/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Epitélio Pigmentado da Retina
15.
J Cell Physiol ; 234(4): 3555-3569, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30565670

RESUMO

Hepatocellular carcinoma (HCC) is mainly associated with hepatitis B virus (HBV) infection and characterized by metastasizing and infiltrating adjacent and distant tissues. Notably, microRNA-1271 (miR-1271) is a tumor suppressor in various cancers. Therefore, we evaluate the ability of miR-1271 to influence cell proliferation, migration, invasion, and apoptosis in HBV-associated HCC through the Adenosine monophosphate-activated protein kinase (AMPK) signaling pathway via targeting CCNA1. HBV-associated HCC and adjacent normal tissues were collected to identify the expression of miR-1271 and CCNA1. To verify the relationship between miR-1271 and CCNA1, we used bioinformatics prediction and the dual-luciferase reporter gene assay. The effects of miR-1271 on HBV-associated HCC cell behaviors were investigated by treatment of the miR-1271 mimic, the miR-1271 inhibitor, or small interfering RNA against CCNA1. The HBV-DNA quantitative assay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromid assay, scratch test, transwell assay, and flow cytometry were used to detect HBV-DNA replication, cell proliferation, invasion, migration, and apoptosis. MiR-1271 showed a low expression, whereas CCNA1 showed a high expression in HBV-associated HCC tissues. We identified that miR-1271 targeted and negatively regulated CCNA1. Upregulated miR-1271 and downregulated CCNA1 inhibited the HBV-associated HCC cell HBV-DNA replication, proliferation, migration, and invasion, while accelerating apoptosis by activating the AMPK signaling pathway. MiR-1271 promotes the activation of the AMPK signaling pathway by binding to CCNA1, whereby miR-1271 suppresses HBV-associated HCC progression. This study points to a potential therapeutic approach of downregulation of miR-1271 in HBV-associated HCC treatment.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Carcinoma Hepatocelular/enzimologia , Ciclina A1/metabolismo , Vírus da Hepatite B/crescimento & desenvolvimento , Hepatite B/virologia , Neoplasias Hepáticas/enzimologia , MicroRNAs/metabolismo , Apoptose , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virologia , Movimento Celular , Proliferação de Células , Ciclina A1/genética , Replicação do DNA , DNA Viral/biossíntese , DNA Viral/genética , Progressão da Doença , Feminino , Células Hep G2 , Hepatite B/complicações , Vírus da Hepatite B/genética , Interações Hospedeiro-Patógeno , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virologia , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Invasividade Neoplásica , Transdução de Sinais , Replicação Viral
16.
Elife ; 72018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30152757

RESUMO

Cycling cells maintain centriole number at precisely two per cell in part by limiting their duplication to S phase under the control of the cell cycle machinery. In contrast, postmitotic multiciliated cells (MCCs) uncouple centriole assembly from cell cycle progression and produce hundreds of centrioles in the absence of DNA replication to serve as basal bodies for motile cilia. Although some cell cycle regulators have previously been implicated in motile ciliogenesis, how the cell cycle machinery is employed to amplify centrioles is unclear. We use transgenic mice and primary airway epithelial cell culture to show that Cdk2, the kinase responsible for the G1 to S phase transition, is also required in MCCs to initiate motile ciliogenesis. While Cdk2 is coupled with cyclins E and A2 during cell division, cyclin A1 is required during ciliogenesis, contributing to an alternative regulatory landscape that facilitates centriole amplification without DNA replication.


Assuntos
Cílios/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Movimento , Organogênese , Animais , Diferenciação Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Centríolos/efeitos dos fármacos , Centríolos/metabolismo , Cílios/efeitos dos fármacos , Ciclina A1/metabolismo , Ciclina E/metabolismo , Células Epiteliais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitose/efeitos dos fármacos , Mutação/genética , Organogênese/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Purinas/farmacologia , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Traqueia/metabolismo , Traqueia/ultraestrutura , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
17.
Zhonghua Nan Ke Xue ; 24(1): 19-26, 2018.
Artigo em Chinês | MEDLINE | ID: mdl-30157355

RESUMO

OBJECTIVE: To explore the change in the proliferation of spermatogenic cells in the male mouse with infertility induced by exogenous estradiol benzoate (EB). METHODS: Sixty male mice aged 4 weeks were randomly divided into a control, a low-dose EB, and a high-dose EB group to be injected intramuscularly with corn oil at 150 µl or EB at 5 or 10 mg/kg, respectively, every other day for 4 weeks. Then, we obtained the weight and indexes of the testis, performed HE staining of the paraffin sections of the testis tissue and epididymal cauda, counted the spermatozoa in the epididymal sperm suspension, and determined the expression of the proliferating cell nuclear antigen (PCNA), the mRNA expressions of CyclinA1, CyclinB1, VASA and p53, and the protein expressions of p53 and phosphorylated p53 in the testis by immunohistochemistry, qRT-PCR and Western blot, respectively. RESULTS: In comparison with the controls, the mice treated with EB showed significantly decreased testicular indexes (P <0.05), no sperm in the sperm suspension or epididymal tubes, remarkably reduced numbers of spermatogonia, primary spermatocytes and Sertoli cells (P <0.05), down-regulated expression of PCNA (P <0.05) and mRNA expressions of CyclinA1, CyclinB1, PCNA and VASA in the seminiferous tubules (P <0.05), but a dose-dependent increase of the p53 level (P <0.05). Western blot revealed markedly higher levels of p53 protein expression and phosphorylation in the EB than in the control group (P <0.05) and even higher in the 10 mg/kg than in the 5 mg/kg EB group (P <0.05). CONCLUSIONS: EB inhibited the proliferation of spermatogenic cells by down-regulating the expressions of cell cycle-related factors in a dose-dependent manner, which might contribute to abnormal proliferation of spermatogenic cells in the testis of infertile male mice.


Assuntos
Proliferação de Células/efeitos dos fármacos , Anticoncepcionais/farmacologia , Estradiol/análogos & derivados , Infertilidade Masculina/patologia , Espermatozoides/efeitos dos fármacos , Testículo/efeitos dos fármacos , Animais , Proliferação de Células/fisiologia , Anticoncepcionais/administração & dosagem , Ciclina A1/metabolismo , Ciclina B1/metabolismo , RNA Helicases DEAD-box/metabolismo , Relação Dose-Resposta a Droga , Regulação para Baixo , Epididimo/citologia , Epididimo/efeitos dos fármacos , Estradiol/administração & dosagem , Estradiol/farmacologia , Masculino , Camundongos , Antígeno Nuclear de Célula em Proliferação/metabolismo , RNA Mensageiro/metabolismo , Distribuição Aleatória , Túbulos Seminíferos/citologia , Túbulos Seminíferos/efeitos dos fármacos , Células de Sertoli/citologia , Células de Sertoli/efeitos dos fármacos , Contagem de Espermatozoides , Espermatócitos/citologia , Espermatócitos/efeitos dos fármacos , Espermatogônias/citologia , Espermatogônias/efeitos dos fármacos , Espermatozoides/citologia , Testículo/citologia , Testículo/metabolismo , Proteína Supressora de Tumor p53/metabolismo
18.
Biochem Biophys Res Commun ; 498(1): 45-51, 2018 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-29499194

RESUMO

Histone acetylation and deacetylation correlate with diverse biological phenomena through gene transcription. Histone deacetylases (HDACs) regulate deacetylation of histones and other proteins. However, as a member of the HDAC family, HDAC8 function during neurodevelopment is currently unknown. Therefore, we investigated HDAC8 function during neurodevelopment by examining embryoid body (EB) formation in P19 cells. HDAC8-selective inhibitor (NCC-149) (HDAC8i)-treated cells showed smaller EBs than non-treated cells, as well as reduced expression levels of the neuronal marker, NeuN. Additionally, HDAC8i treatment led to inhibition of cellular proliferation by G2/M phase accumulation and downregulated cyclin A2 and cyclin B1 gene expression. Furthermore, two independent HDAC8 knockout cell lines were established by CRISPR-Cas9, which resulted in smaller EBs, similar to HDAC8i-treated cells. These results suggest that HDAC8 regulates neural differentiation by exerting control of EB formation.


Assuntos
Diferenciação Celular , Corpos Embrioides/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Neurônios/citologia , Animais , Sequência de Bases , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina A1/metabolismo , Ciclina B2/metabolismo , Regulação para Baixo/efeitos dos fármacos , Corpos Embrioides/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Humanos , Camundongos , Mitose/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
19.
Sci Rep ; 8(1): 2709, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29426911

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and typically fatal lung disease with a very low survival rate. Excess accumulation of fibroblasts, myofibroblasts and extracellular matrix creates hypoxic conditions within the lungs, causing asphyxiation. Hypoxia is, therefore, one of the prominent features of IPF. However, there have been few studies concerning the effects of hypoxia on pulmonary fibroblasts. In this study, we investigated the molecular mechanisms of hypoxia-induced lung fibroblast proliferation. Hypoxia increased the proliferation of normal human pulmonary fibroblasts and IPF fibroblasts after exposure for 3-6 days. Cell cycle analysis demonstrated that hypoxia promoted the G1/S phase transition. Hypoxia downregulated cyclin D1 and A2 levels, while it upregulated cyclin E1 protein levels. However, hypoxia had no effect on the protein expression levels of cyclin-dependent kinase 2, 4, and 6. Chemical inhibition of hypoxia-inducible factor (HIF)-2 reduced hypoxia-induced fibroblast proliferation. Moreover, silencing of Nuclear Factor Activated T cell (NFAT) c2 attenuated the hypoxia-mediated fibroblasts proliferation. Hypoxia also induced the nuclear translocation of NFATc2, as determined by immunofluorescence staining. NFAT reporter assays showed that hypoxia-induced NFAT signaling activation is dependent on HIF-2, but not HIF-1. Furthermore, the inhibition or silencing of HIF-2, but not HIF-1, reduced the hypoxia-mediated NFATc2 nuclear translocation. Our studies suggest that hypoxia induces the proliferation of human pulmonary fibroblasts through NFAT signaling and HIF-2.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fibroblastos/patologia , Hipóxia/patologia , Fibrose Pulmonar Idiopática/patologia , Pulmão/irrigação sanguínea , Fatores de Transcrição NFATC/metabolismo , Adulto , Idoso , Ciclo Celular , Proliferação de Células , Células Cultivadas , Ciclina A1/metabolismo , Ciclina D1/metabolismo , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Hipóxia/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Proteínas Oncogênicas/metabolismo
20.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 25(6): 1733-1737, 2017 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-29262907

RESUMO

OBJECTIVE: To investigate the effects of Cyclin A1 on the proliferation of SKM-1 cells and its underlying role in myelodysplastic syndrome (MDS). METHODS: Cyclin A1 was knocked down with its small interfering RNA (siRNA). The efficiency of siRNA transfection was measured by Western blot and RT-PCR. Then the proliferation of SKM-1 cells and the expression of CDK2,RUNX1 and SRSF2 with and without knockdown of Cyclin A1 recorded and analysed respectively. RESULTS: Cyclin A1 was knocked down by siRNA after transfected for 48 h. The kncokdown of Cyclin A1 inhibited the proliferation of SKM-1 cells and down-regulated the expression of CDK2, RUNX1 and SRSF2, and these effects were at least partially mediated through RUNX1 and SRSF2 signaling pathway. CONCLUSION: Cyclin A1 plays an important role in the proliferation of SKM-1 cells. These findings provide new insights into the pathogenesis of MDS, and it may be a potential target in the treatment of MDS.


Assuntos
Proliferação de Células , Ciclina A1/metabolismo , Síndromes Mielodisplásicas/metabolismo , RNA Interferente Pequeno , Apoptose , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Síndromes Mielodisplásicas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...